Rabu, 11 Januari 2017

Proposal Ilmiah tentang A.I (kelompok)

Kelompok
Abyantama El AP
Dwiko Darmawan
Gilang Agung H
Laurentius Elno B
Raymond Dwipa G
3KA15



Kecerdasan buatan
Kecerdasan Buatan atau kecerdasan yang ditambahkan kepada suatu sistem yang bisa diatur dalam konteks ilmiah atau Intelegensi Artifisial (bahasa Inggris: Artificial Intelligence atau hanya disingkat AI) didefinisikan sebagai kecerdasan entitas ilmiah. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem pakar, permainan komputer (games), logika fuzzy, jaringan syaraf tiruan dan robotika.
Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas. Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.

Sejarah Artificial Intelligence dalam Game

Pada tahun 1769, dataran Eropa dikejutkan dengan suatu permainan catur yang dapat menjawab langkah-langkah permainan catur yang belum ditentukan terlebih dahulu. Mesin ini disebut dengan Maelzel Chess Automation dan dibuat oleh Wolfgang Von Kempelan (1734-1804) dari Hungaria. Akan tetapi mesin ini akhirnya terbakar pada tahun 1854 di Philadelphia Amerika Serikat.banyak orang tidak percaya akan kemampuan mesin tersebut. Dan seorang penulis dari Amerika Serikat, Edgar Allan Poe (1809-1849) menulis sanggahan terhadap mesin tersebut, dia dan kawan-kawannya ternyata benar, bahwa mesin tersebut adalah tipuan, dan kenyataannya bukanlah aoutomation, tetapi merupakan konstruksi yang sangat baik yang dikontrol oleh seorang pemain catur handal yang bersembunyi di dalamnya.

Usaha untuk membuat konstruksi mesin permainan terus dilanjutkan pada tahun 1914, dan mesin yang pertama kali didemonstrasikan adalah mesin permainan catur. Penemu mesin ini adalah Leonardo Torres Y Quevedo, direktur dari Laboratorio de Automatica di Madrid, Spanyol. Beberapa tahun kemudian, ide permainan catur dikembangkan dan diterapkan di komputer oleh Arthur L. Samuel dari IBM dan dikembangkan lebih lanjut oleh Claude Shannon.

 Artificial Intelligence dalam Game

Salah satu unsur yang berperan penting dalam sebuah game adalah kecerdasan buatan. Dengan kecerdasan buatan, elemen-elemen dalam game dapat berperilaku sealami mungkin layaknya manusia.
Game AI adalah aplikasi untuk memodelkan karakter yang terlibat dalam permainan baik sebagai lawan, ataupun karakter pendukung yang merupakan bagian dari permainan tetapi tidak ikut bermain (NPC = Non Playable Character). Peranan kecerdasan buatan dalam hal interaksi pemain dengan permainan adalah pada penggunaan interaksi yang bersifat alami yaitu yang biasa digunakan menusia untuk berinteraksi dengan sesama manusia. Contoh media interaksi ialah:
·         Penglihatan (vision)
·         Suara (voice), ucapan (speech)
·         Gerakan anggota badan ( gesture)
Untuk pembentukan Artificial Intelligence pada game ternyata digunakan pula algoritma, yaitu jenis pohon n-ary untuk suatu struktur. Implementasi pohon (tree) ini biasa disebut game tree. Berdasarkan game tree inilah sebuah game disusun algoritma kecerdasan buatannya. Artificial intellegence yang disematkan dalam sebuah game yang membentuk analisis game tree biasanya merepresentasikan kondisi atau posisi permainan dari game sebagai suatu node, dan merepresentasikan langkah yang mungkin dilakukan sebagai sisi berarah yang menghubungkan node kondisi tersebut ke anak (child) sebagaimana representasi suatu pohon (tree).

Namun, biasanya representasi langsung tersebut mempunyai kelemahan, yaitu representasi data pohon akan menjadi sangat lebar dan banyak. Mungkin bagi sebuah mesin komputer mampu melakukan kalkulasi sebanyak apapun masalah, namun game tree yang lebar dan besar memberikan beberapa masalah, antara lain konsumsi proses memori, kapasitas penyimpanan yang cukup besar dan kinerja yang kurang pada konsol game berspesifikasi rendah. Karena itu dibentuklah beberapa algoritma dan penyederhanaan bagi sebuah game tree.

Pada salah satu contoh game klasik, yaitu tic tac toe, penyederhanaan dapat dilakukan dengan berbagai metode. Salah satu diantaranya adalah minimax. Metode ini berhasil diterapkan dan memberikan nilai reduksi yang cukup signifikan. Dan tidak hanya bisa digunakan secara monoton, minimax juga bisa digunakan untuk game-game yang lebih rumit seperti catur, tentunya dengan algoritma dan representasi berbeda. Selain itu ada beberapa metode yang lain yang bisa dipakai dalam pembuatan games.

Apa itu Algoritma Minimax ?

Minimax yang merupakan salah satu metode penerapan (implementasi) pohon n-ary pada suatu game, menandakan bahwa implementasi struktur (pohon khusunya) sangatlah diperlukan pada pembuatan dan penerapan Artificial Intelligence, dan tidak menutup kemungkinan ilmu dan metode baru yang lebih canggih akan ditemukan di masa depan.
Algoritma minimax merupakan basis dari semua permainan berbasis AI seperti permainan catur misalnya. AI permainan catur tentunya sudah sangat terkenal dimana AI tersebut bahkan dapat mengalahkan juara dunia sekalipun. Pada algoritma minimax, pengecekan akan seluruh kemungkinan yang ada sampai akhir permainan dilakukan. Pengecekan tersebut akan menghasilkan pohon permainan yang berisi semua kemungkinan tersebut. Tentunya dibutuhkan resource yang berskala besar untuk menangani komputasi pencarian pohon solusi tersebut berhubung kombinasi kemungkinan untuk sebuah permainan catur pada setiap geraknya sangat banyak sekali. Keuntungan yang didapat dengan menggunakan algoritma minimax yaitu algoritma minimax mampu menganalisis segala kemungkinan posisi permainan untuk menghasilkan keputusan yang terbaik karena algoritma minimax ini bekerja secara rekursif dengan mencari langkah yang akan membuat lawan mengalami kerugian minimum. Semua strategi lawan akan dihitung dengan algoritma yang sama dan seterusnya. Ini berarti, pada langkah pertama komputer akan menganalisis seluruh pohon permainan. Dan untuk setiap langkahnya, komputer akan memilih langkah yang paling membuat lawan mendapatkan keuntungan minimum, dan yang paling membuat komputer itu sendiri mendapatkan keuntungan maksimum. Dalam penentuan keputusan tersebut dibutuhkan suatu nilai yang merepresentasikan kerugian atau keuntungan yang akan diperoleh jika langkah tersebut dipilih. Untuk itulah disini digunakan sebuah fungsi heurisitic untuk mengevaluasi nilai sebagai nilai yang merepresentasikan hasil permainan yang akan terjadi jika langkah tersebut dipilih. Biasanya pada permainan tic tac toe ini digunakan nilai 1,0,-1 untuk mewakilkan hasil akhir permainan berupa menang, seri, dan kalah. Dari nilai-nilai heuristic inilah komputer akan menentukan simpul mana dari pohon permainan yang akan dipilih, tentunya simpul yang akan dipilih tersebut adalah simpul dengan nilai heuristic yang akan menuntun permainan ke hasil akhir yang menguntungkan bagi komputer.

Algoritma minimax merupakan algoritma yang diterapkan dalam game yang melibatkan dua pemain yang saling bergantian, seperti tic-tac-toe, chess, go, othello dan game yang menggunakan strategi atau logika lainnya. Persamaan antara semua game tersebut yaitu semua merupakan game logika dan game dengan informasi yang lengkap. Ini berarti bahwa game merupakan sekumpulan aturan main dan dasar pemikiran yang logis. Adanya aturan main dan dasar pemikiran yang logis tersebut, maka nantinya setiap pemain dapat mengetahui semua langkah yang mungkin dari pemain lawannya, sehingga pemain bisa tetap “memantau” kondisi permainan sewaktu game sedang berlangsung .



Algoritma minimax merupakan salah satu algoritma yang sering digunakan untuk game kecerdasan buatan yang menggunakan teknik depth first search (DFS) dalam pencariannya pada pohon dengan kedalaman terbatas. Algoritma minimax digunakan untuk memilih langkah terbaik, dimana kedua pemain akan saling berusaha untuk  memenangkan permainan. Selain itu, algoritma minimax ini bekerja secara rekursif dengan mencari langkah yang akan membuat lawan mengalami kerugian minimum. Algoritma minimax mendeskripsikan kondisi apabila terdapat pemain yang mengalami keuntungan, pemain lain akan mengalami kerugian senilai dengan keuntungan yang diperoleh lawan dan sebaliknya.

 Algoritma minimax akan melakukan pengecekan pada seluruh kemungkinan yang ada, sehingga akan menghasilkan pohon permainan yang berisi semua kemungkinan permainan. Dengan pohon permainan ini setiap pemain mengetahui langkah-langkah yang mungkin diberikan pada situasi permainan saat ini. Sehingga untuk setiap langkah dan semua langkah selanjutnya dapat diketahui. Dalam repersentasi pohon pada algoritma minimax, terdapat dua jenis simpul, yaitu simpul min dan simpul max. Max akan memilih langkah dengan nilai tertinggi dan min akan memilih langkah dengan nilai terendah . Dalam penentuan keputusan max/min tersebut dibutuhkan suatu nilai yang merepresentasikan kerugian atau keuntungan yang akan diperoleh jika langkah tersebut dipilih. Untuk itulah disini digunakan sebuah fungsi heuristik.

Fungsi heuristik yang digunakan algoritma ini adalah fungsi heuristik statis . Fungsi heuristik digunakan untuk mengevaluasi nilai sebagai nilai yang merepresentasikan hasil permainan yang akan terjadi jika langkah tersebut dipilih. Dari nilai-nilai heuristik inilah komputer akan menentukan simpul mana dari pohon permainan yang akan dipilih, tentunya simpul yang akan dipilih tersebut adalah simpul dengan nilai heuristik yang akan menuntun permainan ke hasil akhir yang menguntungkan bagi komputer. Untuk proses dan cara kerja algoritma yang lebih jelasnya lagi, dapat dilihat pada Gambar 2.10 yang merepresentasikan cara kerja algoritma Minimax.Fungsi heuristik yang digunakan algoritma ini adalah fungsi heuristik statis. Fungsi heuristik digunakan untuk mengevaluasi nilai sebagai nilai yang merepresentasikan hasil permainan yang akan terjadi jika langkah tersebut dipilih. Dari nilai-nilai heuristik inilah komputer akan menentukan simpul mana dari pohon permainan yang akan dipilih, tentunya simpul yang akan dipilih tersebut adalah simpul dengan nilai heuristik yang akan menuntun permainan ke hasil akhir yang menguntungkan bagi komputer.


Sumber
http://web.eecs.umich.edu/~akamil/teaching/sp03/minimax.pdf
https://id.wikipedia.org/wiki/Teori_permainan
https://id.wikipedia.org/wiki/Minimax
http://www.catatanfadil.com/2014/03/teori-game.html
http://majalah1000guru.net/2011/07/teori-permainan-game-theory/
https://sutrisnoadityo.wordpress.com/2013/10/12/teori-permainan-game-theory/
http://rinaforall.blogspot.co.id/2013/04/algoritma-minimax.html
https://laskyargiovane.wordpress.com/2016/04/25/artificial-intelligence-kecerdasan-buatan-pada-game/
https://setiyanugroho.wordpress.com/2011/04/12/kecerdasan-buatan-dalam-game/

Tidak ada komentar:

Posting Komentar